煤矿巡检机器人同步定位与地图构建方法研究
Research on method of simultaneous localization and mapping of coal mine inspection robot
【索引】杨林,马宏伟,王岩,等.煤矿巡检机器人同步定位与地图构建方法研究[J].工矿千亿国际app下载,2019,45(9):18-24.
【Reference】YANG Lin,MA Hongwei,WANG Yan,et al.Research on method of simultaneous localization and mapping of coal mine inspection robot[J].Industry and Mine Automation,2019,45(9):18-24.
【DOI】10.13272/j.issn.1671-251x.17444
【作者】杨林1,2 ,马宏伟1,2,王岩1,2 ,王川伟1,2,张珍珍1,2
【Author】 YANG Lin1,2,MA Hongwei1,2,WANG Yan1,2,WANG Chuanwei1,2,ZHANG Zhenzhen1,2
【作者机构】1.西安科技大学 机械工程学院, 陕西 西安710054;2.陕西省矿山机电装备智能监测重点实验室, 陕西 西安710054
【Unit】1.College of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054,China;2.Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring,Xi'an 710054,China
【摘要】针对煤矿井下无GPS环境下巡检机器人自主定位问题,研究了基于激光雷达的同步定位与地图构建方法。首先建立激光雷达观测模型和里程计预测模型,将机器人定位和地图构建的实际问题转换为概率数学模型的逻辑推理问题。同时采用自适应蒙特卡罗定位算法进行机器人实时位姿估计,提出了根据粒子权重(地图的匹配度)进行重采样的方法,以去除权重小的粒子,实现了用较少、较好粒子精确表达机器人位姿的后验概率分布,满足机器人利用传感器在栅格地图上实时定位的需求。通过对Fast-SLAM算法进行优化,减少了粒子数量,缓解了粒子耗散,提高了地图构建的精确性。实验结果表明,基于激光雷达的同步定位与地图构建方法有效解决了巡检机器人实时位姿估计和环境地图构建的问题,结合自适应蒙特卡罗定位算法和优化Fast-SLAM算法提高了机器人定位的自适应性和地图构建的精确性。
【Abstract】In view of problem of autonomous location of inspection robot without GPS in underground coal mine, a method of simultaneous localization and mapping based on lidar was studied. Firstly, the observation model of lidar and prediction model of odometer are established, and the actual problems of robot localization and mapping are transformed into the logical reasoning problems of probabilistic mathematical model. At the same time, the adaptive Monte Carlo localization algorithm is used to estimate the real-time pose of the robot,the resampling method based on particle weight(maps matching degree) is proposed to remove particles with small weight, accurate representation of posterior probability distribution of robot posture with fewer and better particles is realized, requirement of using sensors to realize the real-time positioning of robots on raster maps is met. Fast-SLAM algorithm is optimized to reduce the number of particles, and mitigate particle dissipation,so as to improve accuracy of mapping. The experimental results show that the method effectively solves the problem of real-time pose estimation and environment mapping of inspection robot, and improves the self-adaptability of robot localization and accuracy of mapping combining with adaptive Monte Carlo localization algorithm and optimized Fast-SLAM algorithm.
【关键词】 煤矿巡检机器人; 位姿估计; 同步定位; 地图构建; 地图匹配; 激光雷达
【Keywords】coal mine inspection robot; pose estimation; simultaneous localization; mapping; scan-matching for map; lidar
【文献出处】工矿千亿国际app下载,2019年9期
【基金】国家自然科学基金资助项目(50674075);道路施工技术与装备教育部重点实验室项目(300102259508);陕西省科技统筹创新工程计划项目(2013KJTCL01-02)
【分类号】TD67
本网站仅提供本刊2009年之后的全文下载,其它年份的全文下载将自动转到中国知网。中国知网不支持迅雷等加速下载工具,请取消加速工具后下载。
【关 闭】